Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N, N^{\prime}-B i s(4-c h l o r o p h e n y l s u l f o n y l)-$ suberamide

Vinola Z. Rodrigues, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and ${ }^{\text {b }}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 15 July 2011; accepted 17 July 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.063 ; w R$ factor $=0.115$; data-to-parameter ratio $=14.1$.

The asymmetric unit of the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, contains one half-molecule with a center of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The conformations of all the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds in the central amide and aliphatic segments are anti to their adjacent bonds. The molecule is bent at the S atom with a $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ torsion angle of $-80.6(4)^{\circ}$. The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ segment is $79.5(2)^{\circ}$. In the crystal, intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}(\mathrm{C})$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ hydrogen bonds link the molecules into chains along the b axis.

Related literature

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000, 2007), on N -(arylsulfonyl)-amides, see: Rodrigues et al. $(2011 a, b)$ and on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental

Crystal data
$M_{r}=521.42$

$$
a=21.925(4) \AA
$$

$$
\begin{aligned}
& b=5.5855(8) \AA \\
& c=9.381(1) \AA \\
& \beta=93.91(1)^{\circ} \\
& V=1146.1(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.115$
$S=1.18$
2081 reflections
148 parameters
1 restraint

Mo $K \alpha$ radiation
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.48 \times 0.14 \times 0.06 \mathrm{~mm}$

Diffraction, 2009)
$T_{\min }=0.793, T_{\max }=0.970$ 3854 measured reflections 2081 independent reflections 1522 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.85(2)$	$2.19(3)$	$2.975(4)$	$153(4)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots 3^{\mathrm{i}}$	$0.85(2)$	$2.57(3)$	$3.227(4)$	$135(3)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ6195).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o1975-o1976. Gowda, B. T., Shetty, M. \& Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779790.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011a). Acta Cryst. E67, 0837.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011b). Acta Cryst. E67, 0884.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o2101 [doi:10.1107/S1600536811028662]

N, N^{\prime}-Bis(4-chlorophenylsulfonyl)suberamide

V. Z. Rodrigues, S. Foro and B. T. Gowda

Comment

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Gowda et al., 2000, 2007), N-(arylsulfonyl)amides (Rodrigues et al., 2011a,b) and N-(aryl)- arylsulfonamides (Gowda et al., 2005), the crystal structure of N, N-bis(4-chlorophenylsulfonyl)-suberamide has been determined (I) (Fig. 1).

In the two $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ central amide and aliphatic segments of the structure, all the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds in the amide and aliphatic segments are anti to the adjacent bonds, similar to that observed in N, N-bis(2-chlorophenylsulfonyl)-suberamide (II) (Rodrigues et al., 2011b) and N, N-bis(2-chlorophenylsulfonyl)-adipamide (III) (Rodrigues et al., 2011a). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1=-113.9(4)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1=67.2(3)^{\circ}$. The molecule is bent at the S atom with the $\mathrm{C} 1 — \mathrm{~S} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $-80.6(4)^{\circ}$, compared to the values of $68.2(2)^{\circ}$ in (II) and $-65.1(6)^{\circ}$ in (III). In (I), the aliphatic chain is linear with the C7-C8-C9—C10 torsion angle of -179.4 (4) ${ }^{\circ}$.

The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ segment in the two halves of the molecule is $79.5(2)^{\circ}$, compared to the values of $77.5(1)^{\circ}$ in (II) and $89.6(2)^{\circ}$ in (III).

The structure shows simultaneous of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{C})$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ intermolecular hydrogen bonds (Table 1), which link the molecules into infinite chains along the b-axis.

Experimental

N, N-Bis(4-chlorophenylsulfonyl)-suberamide was prepared by refluxing a mixture of suberic acid (octanedioic acid) (0.01 $\mathrm{mol})$ with 4-chlorobenzenesulfonamide $(0.02 \mathrm{~mol})$ and POCl_{3} for 1 hr on a water bath. The reaction mixture was allowed to cool and ether added to it. The solid product was filtered and washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and the methylene $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

supplementary materials

Figures

Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N, N^{1}-Bis(4-chlorophenylsulfonyl)suberamide

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=521.42$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=21.925$ (4) \AA
$b=5.5855(8) \AA$
$c=9.381(1) \AA$
$\beta=93.91(1)^{\circ}$
$V=1146.1$ (3) \AA^{3}
$Z=2$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Radiation source: fine-focus sealed tube graphite
Rotation method data acquisition using ω scans.
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.793, T_{\text {max }}=0.970$
3854 measured reflections

2081 independent reflections
1522 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-24 \rightarrow 26$
$k=-6 \rightarrow 5$
$l=-11 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.115$
$S=1.18$
2081 reflections
148 parameters
1 restraint

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0 . P)^{2}+2.6128 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.009$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (λ^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C11	$0.04045(6)$	$0.7957(3)$	$0.3395(2)$	$0.1014(6)$
S1	$0.26694(5)$	$0.1182(2)$	$0.39060(10)$	$0.0397(3)$
O1	$0.25535(13)$	$-0.0692(5)$	$0.4882(3)$	$0.0482(8)$
O2	$0.28271(13)$	$0.0610(5)$	$0.2497(3)$	$0.0486(8)$
O3	$0.35809(14)$	$0.4648(6)$	$0.2761(3)$	$0.0608(10)$
N1	$0.32305(15)$	$0.2771(6)$	$0.4690(3)$	$0.0397(8)$
H1N	$0.3190(18)$	$0.284(7)$	$0.559(2)$	0.048^{*}
C1	$0.20287(18)$	$0.3113(8)$	$0.3787(4)$	$0.0405(10)$
C2	$0.1531(2)$	$0.2614(9)$	$0.4551(5)$	$0.0573(13)$
H2	0.1534	0.1285	0.5148	0.069^{*}
C3	$0.1026(2)$	$0.4101(10)$	$0.4425(6)$	$0.0694(15)$
H3	0.0686	0.3776	0.4932	0.083^{*}
C4	$0.1034(2)$	$0.6059(9)$	$0.3547(6)$	$0.0596(13)$
C5	$0.1531(2)$	$0.6559(9)$	$0.2780(5)$	$0.0551(12)$
H5	0.1527	0.7886	0.2181	0.066^{*}
C6	$0.2034(2)$	$0.5079(8)$	$0.2906(4)$	$0.0470(11)$
H6	0.2374	0.5407	0.2399	0.056^{*}
C7	$0.35867(17)$	$0.4445(8)$	$0.4041(4)$	$0.0378(10)$
C8	$0.39757(17)$	$0.5930(8)$	$0.5078(4)$	$0.0389(10)$
H8A	0.4223	0.4876	0.5703	0.047^{*}
H8B	0.3713	0.6846	0.5665	0.047^{*}
C9	$0.43924(18)$	$0.7634(8)$	$0.4345(4)$	$0.0409(10)$
H9A	0.4651	0.6715	0.3749	0.049^{*}

H9B	0.4144	0.8693	0.3726	0.049^{*}
C10	$0.47944(17)$	$0.9135(8)$	$0.5373(4)$	$0.0394(10)$
H10A	0.5048	0.8079	0.5984	0.047^{*}
H10B	0.4537	1.0041	0.5978	0.047^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0516(8)$	$0.0761(11)$	$0.1751(18)$	$0.0094(8)$	$-0.0036(9)$	$-0.0021(11)$
S1	$0.0432(6)$	$0.0422(6)$	$0.0343(5)$	$-0.0088(5)$	$0.0065(4)$	$-0.0047(5)$
O1	$0.0551(18)$	$0.0452(19)$	$0.0447(16)$	$-0.0108(15)$	$0.0069(14)$	$0.0030(14)$
O2	$0.0577(19)$	$0.054(2)$	$0.0353(15)$	$-0.0070(15)$	$0.0085(13)$	$-0.0108(14)$
O3	$0.063(2)$	$0.086(3)$	$0.0328(16)$	$-0.0361(19)$	$0.0026(14)$	$0.0065(16)$
N1	$0.0386(18)$	$0.052(2)$	$0.0298(16)$	$-0.0161(17)$	$0.0076(15)$	$-0.0034(17)$
C1	$0.042(2)$	$0.043(3)$	$0.036(2)$	$-0.010(2)$	$0.0002(18)$	$-0.005(2)$
C2	$0.044(3)$	$0.064(3)$	$0.065(3)$	$-0.009(3)$	$0.013(2)$	$0.011(3)$
C3	$0.041(3)$	$0.078(4)$	$0.091(4)$	$-0.008(3)$	$0.018(3)$	$0.006(3)$
C4	$0.040(3)$	$0.054(3)$	$0.083(3)$	$-0.007(2)$	$-0.009(2)$	$-0.010(3)$
C5	$0.063(3)$	$0.044(3)$	$0.057(3)$	$-0.010(2)$	$-0.004(2)$	$0.004(2)$
C6	$0.044(3)$	$0.050(3)$	$0.047(2)$	$-0.008(2)$	$0.007(2)$	$-0.006(2)$
C7	$0.028(2)$	$0.050(3)$	$0.036(2)$	$-0.0030(19)$	$0.0049(17)$	$-0.0005(19)$
C8	$0.035(2)$	$0.049(3)$	$0.034(2)$	$-0.005(2)$	$0.0056(17)$	$-0.004(2)$
C9	$0.040(2)$	$0.044(3)$	$0.038(2)$	$-0.010(2)$	$0.0075(17)$	$-0.0012(19)$
C10	$0.035(2)$	$0.047(3)$	$0.036(2)$	$-0.005(2)$	$0.0071(17)$	$-0.0043(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 4$	$1.738(5)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.425(3)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.425(3)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.649(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.769(4)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.205(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.386(5)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.852(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.374(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.375(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(7)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.370(7)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.75(18)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$105.61(17)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$108.29(17)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$108.25(18)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$108.65(18)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$105.37(19)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	$126.4(3)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.375(6)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.377(6)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.499(5)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.516(5)$
$\mathrm{C} 8-\mathrm{H} 8 A$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 9-\mathrm{C} 10$	$1.515(5)$
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 10-\mathrm{C} 10 \mathrm{i}$	$1.525(7)$
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.4(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$122.2(4)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$124.1(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$113.6(3)$
C7-C8-C9	$112.8(3)$

sup-4

supplementary materials

$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$120(3)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$110(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.0(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$119.9(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$119.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.6(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.3(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.2(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$119.7(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 11$	$119.1(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.5(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	$165.0(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	$35.6(4)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	$-80.6(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-1.3(4)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$130.2(3)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-113.9(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$179.8(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-48.7(4)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$67.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.5(7)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.6(8)$
S 5	

C7-C8-H8A	109.0
C9-C8-H8A	109.0
C7-C8-H8B	109.0
C9-C8-H8B	109.0
H8A-C8-H8B	107.8
C10-C9-C8	$113.6(3)$
C10-C9-H9A	108.8
C8-C9-H9A	108.8
C10-C9-H9B	108.8
C8-C9-H9B	108.8
H9A-C9-H9B	107.7
C9-C10-C10	$113.2(4)$
C9-C10-H10A	108.9
C10i-C10-H10A	108.9
C9-C10-H10B	108.9
C10-C10-H10B	108.9
H10A-C10-H10B	107.7
C2-C3-C4-Cl1	$-179.4(4)$
C3-C4-C5-C6	$-0.7(7)$
C11-C4-C5-C6	$179.3(3)$
C4-C5-C6-C1	$0.6(7)$
C2-C1-C6-C5	$-0.5(6)$
S1-C1-C6-C5	$178.4(3)$
S1-N1-C7-O3	$-11.8(6)$
S1-N1-C7-C8	$168.7(3)$
O3-C7-C8-C9	$-3.3(6)$
N1-C7-C8-C9	$176.2(3)$
C7-C8-C9-C10	$-179.4(3)$
C8-C9-C10-C10	$-179.2(4)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.85(2)$	$2.19(3)$	$2.975(4)$	$153(4)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots 3^{\mathrm{ii}}$	$0.85(2)$	$2.57(3)$	$3.227(4)$	$135(3)$

Symmetry codes: (ii) $x,-y+1 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

